Northern Ireland (UK)

General data
- Name: Northern Ireland (UK)
- Continent: Europe
- Climates: Temperate
About
The more catches you post, the higher your chances of winning this amazing prize.
Every catch shared between May and November 2025 is automatically entered into the prize draw.
Only one rule: Make sure to tag both the fish species and the body of water!
1 x Application (91.45%) | 293ms |
1 x Booting (8.55%) | 27.36ms |
select * from `sessions` where `id` = 'iozh4MlpH03LeNYqbqRGWOr9NSXIBm6kM1ET6mb5' limit 1
Bindings |
|
Backtrace |
|
select * from `countries` where `alias` = 'northern-ireland' and `published` = 1 limit 1
Bindings |
|
Backtrace |
|
select * from `translations` where `lang` = 'en' and `translations`.`translatable_id` in (261) and `translations`.`translatable_type` = 'App\\Models\\Country'
Bindings |
|
Backtrace |
|
select `continents`.*, `continent_country`.`country_id` as `pivot_country_id`, `continent_country`.`continent_id` as `pivot_continent_id` from `continents` inner join `continent_country` on `continents`.`id` = `continent_country`.`continent_id` where `continent_country`.`country_id` in (261)
Backtrace |
|
select * from `translations` where `lang` = 'en' and `translations`.`translatable_id` in (2) and `translations`.`translatable_type` = 'App\\Models\\Continent'
Bindings |
|
Backtrace |
|
select `waters`.*, `country_water`.`country_id` as `pivot_country_id`, `country_water`.`water_id` as `pivot_water_id` from `waters` inner join `country_water` on `waters`.`id` = `country_water`.`water_id` where `country_water`.`country_id` = 261
Bindings |
|
Backtrace |
|
select * from `translations` where `lang` = 'en' and `translations`.`translatable_id` in (41, 625, 918, 919, 1454, 1455, 2890, 3078, 3115, 3117, 3118, 3119, 3129, 3140, 3141, 3153) and `translations`.`translatable_type` = 'App\\Models\\Water'
Bindings |
|
Backtrace |
|
select `fish`.*, `water_fish`.`water_id` as `pivot_water_id`, `water_fish`.`fish_id` as `pivot_fish_id` from `fish` inner join `water_fish` on `fish`.`id` = `water_fish`.`fish_id` where `water_fish`.`water_id` = 41
Bindings |
|
Backtrace |
|
select * from `fish_names` where `locale` = 'en' and `main` = 1 and `fish_names`.`fish_id` in (142, 145, 170, 194, 220, 221, 232, 238, 239, 240, 241, 242, 243, 244, 257, 260, 261, 262, 263, 265, 267, 269, 271, 275, 278, 284, 285, 286, 288, 290, 291, 293, 295, 297, 300, 304, 308, 310, 314, 315, 317, 319, 321, 323, 326, 329, 332, 334, 336, 337, 338, 339, 344, 347, 351, 352, 354, 356, 357, 359, 362, 363, 365, 367, 368, 372, 374, 375, 376, 377, 380, 384, 385, 388, 397, 400, 401, 403, 404, 405, 406, 410, 411, 416, 417, 418, 419, 422, 424, 427, 437, 439, 441, 443, 444, 446, 447, 448, 464, 468, 471, 473, 477, 480, 483, 486, 489, 490, 493, 496, 499, 508, 509, 513, 517, 524, 589, 634, 657, 663, 664, 687, 700, 710, 713, 714, 720, 797, 798, 800, 801, 805, 810, 812, 815, 817, 835, 896, 926, 929, 932, 934, 936, 937, 939, 940, 941, 944, 945, 946, 947, 951, 953, 954, 956, 957, 959, 960, 964, 966, 970, 983, 984, 986, 988, 995, 996, 998, 1001, 1002, 1003, 1006, 1007, 1008, 1012, 1018, 1022, 1024, 1025, 1031, 1033, 1040, 1043, 1046, 1047, 1050, 1052, 1053, 1054, 1055, 1058, 1059, 1060, 1088, 1093, 1098, 1101, 1102, 1113, 1137, 1138, 1145, 1149, 1153, 1156, 1159, 1162, 1173, 1212, 1214, 1230, 1232, 1236, 1239, 1242, 1251, 1255, 1256, 1257, 1262, 1265, 1266, 1267, 1268, 1272, 1276, 1278, 1279, 1280, 1282, 1314, 1315, 1321, 1333, 1335, 1338, 1348, 1349, 1352, 1380, 1398, 1402, 1407, 1415, 1425, 1426, 1427, 1445, 1499, 1523, 1524, 1546, 1547, 1549, 1551, 1584, 1586, 1590, 1598, 1599, 1600, 1602, 1603, 1604, 1605, 1606, 1611, 1612, 1614, 1615, 1618, 1619, 1621, 1624, 1627, 1629, 1631, 1632, 1643, 1654, 1659, 1675, 1684, 1686, 1690, 1692, 1694, 1697, 1698, 1719, 1723, 1724, 1725, 1752, 1753, 1754, 1761, 1768, 1797, 1798, 1817, 1840, 1858, 1862, 1873, 1877, 1886, 1890, 1898, 1908, 1910, 1914, 1934, 1939, 1946, 1947, 1954, 1970, 1971, 2010, 2020, 2050, 2059, 2060, 2063, 2069, 2071, 2081, 2084, 2085, 2086, 2087, 2089, 2091, 2092, 2093, 2099, 2101, 2103, 2106, 2108, 2109, 2110, 2111, 2129, 2143, 2147, 2151, 2154, 2161, 2162, 2163, 2166, 2168, 2170, 2175, 2181, 2183, 2197, 2199, 2201, 2217, 2220, 2224, 2226, 2237, 2246, 2249, 2250, 2261, 2262, 2269, 2271, 2272, 2273, 2274, 2275, 2276, 2278, 2292, 2294, 2295, 2296, 2297, 2300, 2302, 2317, 2319, 2320, 2321, 2322, 2323, 2324, 2329, 2332, 2335, 2338, 2339, 2342, 2345, 2348, 2349, 2354, 2355, 2358, 2361, 2362, 2365, 2366, 2368, 2370, 2372, 2374, 2375, 2377, 2379, 2380, 2382, 2383, 2386, 2391, 2393, 2395, 2396, 2399, 2401, 2402, 2404, 2406, 2410, 2412, 2413, 2415, 2417, 2418, 2419, 2422, 2424, 2426, 2428, 2429, 2430, 2433, 2434, 2436, 2437, 2439, 2444, 2454, 2455, 2468, 2469, 2471, 2473, 2474, 2475, 2477, 2480, 2483, 2485, 2487, 2489, 2490, 2492, 2493, 2495, 2499, 2500, 2502, 2505, 2510, 2547, 2550, 2569, 2582, 2596, 2598, 2600, 2606, 2608, 2612, 2614, 2631, 2632, 2638, 2646, 2648, 2649, 2650, 2651, 2675, 2676, 2682, 2683, 2701, 2710, 2719, 2721, 2722, 2723, 2724, 2726, 2734, 2737, 2778, 2799, 2813, 2816, 2820, 2825, 2846, 2856, 2873, 2886, 2899, 2906, 2917, 2940, 8009, 8154, 8206, 9711, 9714, 10165, 10188, 10465, 10487, 11021, 11360, 11881, 12045, 12081, 12138, 12278, 12624, 13090, 13112, 13335, 13349, 13643, 13650, 14092, 14172, 14604, 14875, 15075, 15120, 15153, 15161, 15307, 15410, 15640, 15802, 16623, 17232, 17592, 18264, 19475, 19537, 19839, 20076, 20506, 20609, 21226, 21731, 21751, 21885, 22067, 23229, 23323, 23411, 23449, 23572, 23893, 23999, 24068, 25306, 25567, 26174, 26787, 27335, 27900, 27955, 28050, 28380, 28782, 29559, 30142, 30768, 30968, 31349, 31675, 32131, 32256, 32408, 32466, 32638, 32925, 33033, 33219, 33551, 33673, 34343, 34508, 35423, 36314, 37367, 37770, 38310, 38330, 39414, 40163, 40216, 40223, 40527, 40805)
Bindings |
|
Backtrace |
|
select `fish`.*, `water_fish`.`water_id` as `pivot_water_id`, `water_fish`.`fish_id` as `pivot_fish_id` from `fish` inner join `water_fish` on `fish`.`id` = `water_fish`.`fish_id` where `water_fish`.`water_id` = 625
Bindings |
|
Backtrace |
|
select * from `fish_names` where `locale` = 'en' and `main` = 1 and `fish_names`.`fish_id` in (142, 437, 444, 1546, 1547, 1549, 1551, 1627, 1629, 1877, 2060, 2069, 2071, 2345, 2348, 2354, 2358, 2370, 2379, 2433, 2473, 2474, 2475, 2477, 2489, 2493, 2500, 2502, 27335, 27955, 32925)
Bindings |
|
Backtrace |
|
select `fish`.*, `water_fish`.`water_id` as `pivot_water_id`, `water_fish`.`fish_id` as `pivot_fish_id` from `fish` inner join `water_fish` on `fish`.`id` = `water_fish`.`fish_id` where `water_fish`.`water_id` = 918
Bindings |
|
Backtrace |
|
select * from `fish_names` where `locale` = 'en' and `main` = 1 and `fish_names`.`fish_id` in (5, 55, 83, 138, 142, 195, 220, 401)
Bindings |
|
Backtrace |
|
select `fish`.*, `water_fish`.`water_id` as `pivot_water_id`, `water_fish`.`fish_id` as `pivot_fish_id` from `fish` inner join `water_fish` on `fish`.`id` = `water_fish`.`fish_id` where `water_fish`.`water_id` = 919
Bindings |
|
Backtrace |
|
select * from `fish_names` where `locale` = 'en' and `main` = 1 and `fish_names`.`fish_id` in (5, 55, 83, 138, 220, 401, 877, 1985)
Bindings |
|
Backtrace |
|
select `fish`.*, `water_fish`.`water_id` as `pivot_water_id`, `water_fish`.`fish_id` as `pivot_fish_id` from `fish` inner join `water_fish` on `fish`.`id` = `water_fish`.`fish_id` where `water_fish`.`water_id` = 1454
Bindings |
|
Backtrace |
|
select `fish`.*, `water_fish`.`water_id` as `pivot_water_id`, `water_fish`.`fish_id` as `pivot_fish_id` from `fish` inner join `water_fish` on `fish`.`id` = `water_fish`.`fish_id` where `water_fish`.`water_id` = 1455
Bindings |
|
Backtrace |
|
select * from `fish_names` where `locale` = 'en' and `main` = 1 and `fish_names`.`fish_id` in (142, 401)
Bindings |
|
Backtrace |
|
select `fish`.*, `water_fish`.`water_id` as `pivot_water_id`, `water_fish`.`fish_id` as `pivot_fish_id` from `fish` inner join `water_fish` on `fish`.`id` = `water_fish`.`fish_id` where `water_fish`.`water_id` = 2890
Bindings |
|
Backtrace |
|
select `fish`.*, `water_fish`.`water_id` as `pivot_water_id`, `water_fish`.`fish_id` as `pivot_fish_id` from `fish` inner join `water_fish` on `fish`.`id` = `water_fish`.`fish_id` where `water_fish`.`water_id` = 3078
Bindings |
|
Backtrace |
|
select `fish`.*, `water_fish`.`water_id` as `pivot_water_id`, `water_fish`.`fish_id` as `pivot_fish_id` from `fish` inner join `water_fish` on `fish`.`id` = `water_fish`.`fish_id` where `water_fish`.`water_id` = 3115
Bindings |
|
Backtrace |
|
select `fish`.*, `water_fish`.`water_id` as `pivot_water_id`, `water_fish`.`fish_id` as `pivot_fish_id` from `fish` inner join `water_fish` on `fish`.`id` = `water_fish`.`fish_id` where `water_fish`.`water_id` = 3117
Bindings |
|
Backtrace |
|
select `fish`.*, `water_fish`.`water_id` as `pivot_water_id`, `water_fish`.`fish_id` as `pivot_fish_id` from `fish` inner join `water_fish` on `fish`.`id` = `water_fish`.`fish_id` where `water_fish`.`water_id` = 3118
Bindings |
|
Backtrace |
|
select `fish`.*, `water_fish`.`water_id` as `pivot_water_id`, `water_fish`.`fish_id` as `pivot_fish_id` from `fish` inner join `water_fish` on `fish`.`id` = `water_fish`.`fish_id` where `water_fish`.`water_id` = 3119
Bindings |
|
Backtrace |
|
select `fish`.*, `water_fish`.`water_id` as `pivot_water_id`, `water_fish`.`fish_id` as `pivot_fish_id` from `fish` inner join `water_fish` on `fish`.`id` = `water_fish`.`fish_id` where `water_fish`.`water_id` = 3129
Bindings |
|
Backtrace |
|
select `fish`.*, `water_fish`.`water_id` as `pivot_water_id`, `water_fish`.`fish_id` as `pivot_fish_id` from `fish` inner join `water_fish` on `fish`.`id` = `water_fish`.`fish_id` where `water_fish`.`water_id` = 3140
Bindings |
|
Backtrace |
|
select `fish`.*, `water_fish`.`water_id` as `pivot_water_id`, `water_fish`.`fish_id` as `pivot_fish_id` from `fish` inner join `water_fish` on `fish`.`id` = `water_fish`.`fish_id` where `water_fish`.`water_id` = 3141
Bindings |
|
Backtrace |
|
select `fish`.*, `water_fish`.`water_id` as `pivot_water_id`, `water_fish`.`fish_id` as `pivot_fish_id` from `fish` inner join `water_fish` on `fish`.`id` = `water_fish`.`fish_id` where `water_fish`.`water_id` = 3153
Bindings |
|
Backtrace |
|
select * from `companies` where `companies`.`country_id` in (261)
Backtrace |
|
select `climates`.*, `climate_country`.`country_id` as `pivot_country_id`, `climate_country`.`climate_id` as `pivot_climate_id` from `climates` inner join `climate_country` on `climates`.`id` = `climate_country`.`climate_id` where `climate_country`.`country_id` = 261
Bindings |
|
Backtrace |
|
select * from `translations` where `translations`.`translatable_type` = 'App\\Models\\Climate' and `translations`.`translatable_id` = 3 and `translations`.`translatable_id` is not null and `lang` = 'en' limit 1
Bindings |
|
Backtrace |
|
select count(*) as aggregate from `tags` where `tags`.`context_id` = 261 and `tags`.`context_id` is not null and `type` = 'country'
Bindings |
|
Backtrace |
|
with recursive `laravel_cte` as ((select `fish`.*, -1 as `depth`, cast(`id` as char(65535)) as `path` from `fish` where `fish`.`id` in (4, 39, 54, 60, 62, 63, 82, 119, 147, 159, 163, 166, 193, 219, 227, 231, 235, 236, 237, 256, 259, 264, 266, 268, 270, 274, 277, 283, 287, 289, 292, 294, 296, 299, 303, 307, 309, 313, 316, 318, 320, 322, 325, 328, 331, 333, 335, 343, 346, 350, 353, 355, 358, 361, 364, 366, 371, 373, 379, 383, 387, 396, 399, 415, 421, 423, 426, 429, 436, 438, 440, 442, 445, 463, 467, 470, 472, 474, 476, 479, 482, 485, 488, 492, 495, 498, 507, 512, 516, 523, 588, 602, 633, 656, 662, 699, 709, 719, 799, 802, 804, 809, 811, 813, 834, 895, 928, 931, 933, 935, 938, 943, 950, 952, 955, 958, 963, 965, 968, 982, 987, 994, 997, 1004, 1011, 1021, 1023, 1030, 1032, 1039, 1042, 1045, 1051, 1077, 1092, 1097, 1100, 1115, 1136, 1144, 1152, 1155, 1172, 1211, 1229, 1231, 1233, 1235, 1238, 1241, 1243, 1247, 1250, 1261, 1264, 1271, 1273, 1275, 1281, 1294, 1313, 1320, 1332, 1334, 1347, 1351, 1397, 1401, 1406, 1424, 1508, 1522, 1548, 1550, 1583, 1585, 1610, 1623, 1626, 1628, 1630, 1652, 1658, 1660, 1674, 1683, 1685, 1689, 1696, 1701, 1718, 1739, 1750, 1767, 1816, 1838, 1857, 1861, 1872, 1876, 1885, 1889, 1897, 1907, 1909, 1913, 1933, 1936, 1945, 1969, 2049, 2058, 2062, 2070, 2072, 2083, 2088, 2090, 2097, 2100, 2102, 2104, 2128, 2146, 2150, 2165, 2196, 2198, 2219, 2223, 2236, 2248, 2260, 2270, 2299, 2301, 2318, 2334, 2337, 2341, 2344, 2347, 2353, 2357, 2360, 2364, 2367, 2369, 2373, 2376, 2381, 2385, 2392, 2394, 2398, 2400, 2403, 2405, 2411, 2414, 2416, 2421, 2423, 2425, 2427, 2432, 2435, 2438, 2462, 2470, 2472, 2476, 2479, 2482, 2484, 2486, 2488, 2491, 2494, 2497, 2501, 2509, 2581, 2595, 2597, 2605, 2607, 2611, 2613, 2615, 2674, 2681, 2700, 2704, 2718, 2720, 2725, 2732, 2776, 2815, 2819, 2824, 2845, 2872, 2884, 2905, 2916, 2936, 3370, 3380, 3422, 3689, 3697, 3747, 3806, 4017, 4113, 4152, 4171, 4209, 4614, 4672, 4778, 4849, 4916, 5075, 5218, 5278, 5461, 5504, 5534, 5652, 5805, 5839, 5909, 5936, 6151, 6230, 6619, 6748, 6764, 6857, 7071, 7120, 7263, 7448, 7659)) union all (select `fish`.*, `depth` - 1 as `depth`, concat(`path`, '.', `fish`.`id`) from `fish` inner join `laravel_cte` on `laravel_cte`.`parent_id` = `fish`.`id`)) select * from `laravel_cte`
Bindings |
|
Backtrace |
|
select * from `fish_names` where `locale` = 'en' and `main` = 1 and `fish_names`.`fish_id` in (1, 3, 4, 25, 34, 38, 39, 51, 52, 54, 58, 59, 60, 62, 63, 66, 67, 68, 69, 70, 71, 72, 81, 82, 119, 147, 148, 151, 155, 159, 161, 163, 165, 166, 191, 192, 193, 202, 218, 219, 227, 230, 231, 233, 234, 235, 236, 237, 255, 256, 258, 259, 264, 266, 268, 270, 272, 273, 274, 276, 277, 281, 283, 287, 289, 292, 294, 296, 298, 299, 301, 302, 303, 305, 306, 307, 309, 311, 312, 313, 316, 318, 320, 322, 324, 325, 327, 328, 330, 331, 333, 335, 342, 343, 345, 346, 348, 349, 350, 353, 355, 358, 360, 361, 364, 366, 369, 370, 371, 373, 378, 379, 381, 382, 383, 386, 387, 396, 398, 399, 413, 414, 415, 421, 423, 426, 429, 431, 436, 438, 440, 442, 445, 461, 462, 463, 465, 466, 467, 469, 470, 472, 474, 476, 478, 479, 481, 482, 484, 485, 487, 488, 491, 492, 494, 495, 497, 498, 502, 503, 505, 506, 507, 510, 511, 512, 514, 515, 516, 521, 522, 523, 537, 586, 587, 588, 602, 631, 632, 633, 655, 656, 660, 661, 662, 676, 692, 697, 698, 699, 705, 707, 708, 709, 711, 712, 717, 718, 719, 799, 802, 803, 804, 809, 811, 813, 832, 833, 834, 892, 893, 894, 895, 904, 906, 908, 909, 910, 927, 928, 931, 933, 935, 938, 942, 943, 949, 950, 952, 955, 958, 961, 962, 963, 965, 967, 968, 980, 981, 982, 987, 994, 997, 1004, 1009, 1010, 1011, 1013, 1019, 1020, 1021, 1023, 1030, 1032, 1037, 1038, 1039, 1041, 1042, 1044, 1045, 1051, 1073, 1076, 1077, 1091, 1092, 1095, 1096, 1097, 1099, 1100, 1115, 1135, 1136, 1143, 1144, 1150, 1151, 1152, 1154, 1155, 1172, 1211, 1229, 1231, 1233, 1235, 1237, 1238, 1240, 1241, 1243, 1246, 1247, 1250, 1260, 1261, 1263, 1264, 1271, 1273, 1275, 1281, 1294, 1311, 1312, 1313, 1320, 1331, 1332, 1334, 1346, 1347, 1350, 1351, 1397, 1401, 1406, 1424, 1508, 1521, 1522, 1548, 1550, 1583, 1585, 1609, 1610, 1622, 1623, 1626, 1628, 1630, 1651, 1652, 1658, 1660, 1664, 1674, 1683, 1685, 1688, 1689, 1696, 1701, 1717, 1718, 1736, 1739, 1744, 1745, 1749, 1750, 1767, 1770, 1779, 1799, 1815, 1816, 1838, 1843, 1855, 1856, 1857, 1859, 1860, 1861, 1867, 1871, 1872, 1874, 1875, 1876, 1880, 1884, 1885, 1887, 1888, 1889, 1895, 1896, 1897, 1905, 1906, 1907, 1909, 1911, 1912, 1913, 1927, 1928, 1931, 1932, 1933, 1935, 1936, 1944, 1945, 1968, 1969, 2014, 2049, 2057, 2058, 2061, 2062, 2070, 2072, 2082, 2083, 2088, 2090, 2097, 2100, 2102, 2104, 2127, 2128, 2146, 2150, 2165, 2196, 2198, 2219, 2223, 2236, 2247, 2248, 2257, 2260, 2270, 2298, 2299, 2301, 2318, 2333, 2334, 2336, 2337, 2340, 2341, 2343, 2344, 2346, 2347, 2353, 2356, 2357, 2359, 2360, 2364, 2367, 2369, 2373, 2376, 2381, 2385, 2392, 2394, 2397, 2398, 2400, 2403, 2405, 2411, 2414, 2416, 2420, 2421, 2423, 2425, 2427, 2431, 2432, 2435, 2438, 2462, 2470, 2472, 2476, 2478, 2479, 2481, 2482, 2484, 2486, 2488, 2491, 2494, 2496, 2497, 2501, 2509, 2581, 2595, 2597, 2604, 2605, 2607, 2611, 2613, 2615, 2673, 2674, 2681, 2699, 2700, 2703, 2704, 2718, 2720, 2725, 2729, 2732, 2749, 2776, 2814, 2815, 2818, 2819, 2824, 2845, 2871, 2872, 2884, 2905, 2916, 2936, 2947, 2950, 2960, 2989, 3032, 3042, 3084, 3182, 3212, 3217, 3272, 3370, 3380, 3422, 3689, 3697, 3747, 3806, 4017, 4113, 4152, 4171, 4209, 4614, 4672, 4778, 4849, 4916, 5075, 5218, 5278, 5461, 5504, 5534, 5652, 5805, 5839, 5909, 5936, 6151, 6230, 6619, 6748, 6764, 6857, 7071, 7120, 7263, 7448, 7659)
Bindings |
|
Backtrace |
|
select * from `tags` where `tags`.`context_id` = 261 and `tags`.`context_id` is not null and `type` = 'country' order by `created_at` desc limit 100
Bindings |
|
Backtrace |
|
select * from `fish` where `type` = 'species' and `fish`.`id` in (261)
Bindings |
|
Backtrace |
|
select * from `fish_names` where `locale` = 'en' and `main` = 1 and `fish_names`.`fish_id` in (261)
Bindings |
|
Backtrace |
|
select * from `waters` where `waters`.`id` in (261)
Bindings |
|
Backtrace |
|
select * from `translations` where `lang` = 'en' and `translations`.`translatable_id` in (261) and `translations`.`translatable_type` = 'App\\Models\\Water'
Bindings |
|
Backtrace |
|
select * from `techniques` where `techniques`.`id` in (261)
Bindings |
|
Backtrace |
|
select * from `waters` where `waters`.`id` in (261)
Bindings |
|
Backtrace |
|
select * from `translations` where `lang` = 'en' and `translations`.`translatable_id` in (261) and `translations`.`translatable_type` = 'App\\Models\\Water'
Bindings |
|
Backtrace |
|
select * from `posts` where `posts`.`id` = 11189 limit 1
Bindings |
|
Backtrace |
|
select * from `attachments` where `attachments`.`post_id` in (11189)
Backtrace |
|
select * from `attachments` where `attachments`.`post_id` = 11189 and `attachments`.`post_id` is not null limit 1
Bindings |
|
Backtrace |
|
select * from `brands` where `brands`.`country_id` = 261 and `brands`.`country_id` is not null
Bindings |
|
Backtrace |
|
select * from `sessions` where `id` = 'iozh4MlpH03LeNYqbqRGWOr9NSXIBm6kM1ET6mb5' limit 1
Bindings |
|
Backtrace |
|
insert into `sessions` (`payload`, `last_activity`, `user_id`, `ip_address`, `user_agent`, `id`) values ('YTozOntzOjY6Il90b2tlbiI7czo0MDoiWXhOVHNSbWZuVVVhRmtqNW52M2FLczA5SmZqRFZ6WGRlOU9yZHdxYyI7czo5OiJfcHJldmlvdXMiO2E6MTp7czozOiJ1cmwiO3M6NTI6Imh0dHBzOi8vZGV2LnRhZ215ZmlzaC5jb20vY291bnRyaWVzL25vcnRoZXJuLWlyZWxhbmQiO31zOjY6Il9mbGFzaCI7YToyOntzOjM6Im9sZCI7YTowOnt9czozOiJuZXciO2E6MDp7fX19', 1751641123, null, '172.18.0.2', 'Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)', 'iozh4MlpH03LeNYqbqRGWOr9NSXIBm6kM1ET6mb5')
Bindings |
|
Backtrace |
|
200
[]
[]
0 of 0array:35 [▼ "x-real-ip" => array:1 [▶ 0 => "108.162.242.89" ] "x-forwarded-server" => array:1 [▶ 0 => "traefik" ] "x-forwarded-proto" => array:1 [▶ 0 => "https" ] "x-forwarded-port" => array:1 [▶ 0 => "443" ] "x-forwarded-host" => array:1 [▶ 0 => "dev.tagmyfish.com" ] "x-forwarded-for" => array:1 [▶ 0 => "108.162.242.89" ] "upgrade-insecure-requests" => array:1 [▶ 0 => "1" ] "sec-fetch-user" => array:1 [▶ 0 => "?1" ] "sec-fetch-site" => array:1 [▶ 0 => "none" ] "sec-fetch-mode" => array:1 [▶ 0 => "navigate" ] "sec-fetch-dest" => array:1 [▶ 0 => "document" ] "sec-ch-ua-platform" => array:1 [▶ 0 => ""Windows"" ] "sec-ch-ua-mobile" => array:1 [▶ 0 => "?0" ] "sec-ch-ua" => array:1 [▶ 0 => ""Chromium";v="130", "HeadlessChrome";v="130", "Not?A_Brand";v="99"" ] "priority" => array:1 [▶ 0 => "u=0, i" ] "pragma" => array:1 [▶ 0 => "no-cache" ] "cf-visitor" => array:1 [▶ 0 => "{"scheme":"https"}" ] "cf-timezone" => array:1 [▶ 0 => "America/New_York" ] "cf-region-code" => array:1 [▶ 0 => "OH" ] "cf-region" => array:1 [▶ 0 => "Ohio" ] "cf-ray" => array:1 [▶ 0 => "959f7b789ec8a23b-YYZ" ] "cf-postal-code" => array:1 [▶ 0 => "43215" ] "cf-metro-code" => array:1 [▶ 0 => "0" ] "cf-iplongitude" => array:1 [▶ 0 => "-82.99879" ] "cf-iplatitude" => array:1 [▶ 0 => "39.96118" ] "cf-ipcountry" => array:1 [▶ 0 => "US" ] "cf-ipcontinent" => array:1 [▶ 0 => "NA" ] "cf-ipcity" => array:1 [▶ 0 => "Columbus" ] "cf-connecting-ip" => array:1 [▶ 0 => "216.73.216.185" ] "cdn-loop" => array:1 [▶ 0 => "cloudflare; loops=1" ] "cache-control" => array:1 [▶ 0 => "no-cache" ] "accept-encoding" => array:1 [▶ 0 => "gzip, br" ] "accept" => array:1 [▶ 0 => "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7" ] "user-agent" => array:1 [▶ 0 => "Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)" ] "host" => array:1 [▶ 0 => "dev.tagmyfish.com" ] ]
[]
0 of 0array:5 [▼ "content-type" => array:1 [▶ 0 => "text/html; charset=UTF-8" ] "cache-control" => array:1 [▶ 0 => "no-cache, private" ] "date" => array:1 [▶ 0 => "Fri, 04 Jul 2025 14:58:42 GMT" ] "set-cookie" => array:2 [▶ 0 => "XSRF-TOKEN=eyJpdiI6ImcvMzJYckZjczFTUFZmYkZjUjBJWFE9PSIsInZhbHVlIjoia25OSkNhYVRLMHgyTUtwV3c1YkU1eThyVmJ4MzRwYndnMHc4aVByc3AyUVBtZFNVaEJteHdxQVVEU2JtV2drSkdXUnhIRzFvSklYY3JYeUNyZVBtY0E2NUdzb2Z4VHNSK1o4bDlkZDBNRnZheU43QUowTjYzeENOQ1BFODlCS1MiLCJtYWMiOiJjOTI5ZDc4ZjFhYjAwYzBmNmVmZGY3ZDlhMjM3YmU4YmViNTRjNWYyMTBhMDIxYjljZGZiNDdkNzJlODUzYWU2IiwidGFnIjoiIn0%3D; expires=Fri, 04 Jul 2025 16:58:43 GMT; Max-Age=7200; path=/; secure; samesite=lax ◀XSRF-TOKEN=eyJpdiI6ImcvMzJYckZjczFTUFZmYkZjUjBJWFE9PSIsInZhbHVlIjoia25OSkNhYVRLMHgyTUtwV3c1YkU1eThyVmJ4MzRwYndnMHc4aVByc3AyUVBtZFNVaEJteHdxQVVEU2JtV2drSkdXUnhIR ▶" 1 => "tagmyfish_session=eyJpdiI6ImhCMG5sUHZob05zQ2IvNUhqblErM2c9PSIsInZhbHVlIjoiWmVnM2MyMER2ZkROUXp4bTZpejVVY0QrbVdHVmUwM3psU0k4STdQMDNuemZYQXUraGRtSm9JWGpCWm9PTDdzSmtabmtqcnpTakJ1cXBUTUdUTCtQdCtHTDZQWWxadUFnMTFET1VhTE5NcDMwQ2gwM0F6QURkWnYzV2N1NTFsVHMiLCJtYWMiOiJmMDE3NTE1ZmVjODQxZWIyZjIyNmRiYTM0MGVmNDkwMjFiZTNhYmM2YTRjOTQyZGQwYzdiNjM0OWRkNDFiYjIwIiwidGFnIjoiIn0%3D; expires=Fri, 04 Jul 2025 16:58:43 GMT; Max-Age=7200; path=/; secure; httponly; samesite=lax ◀tagmyfish_session=eyJpdiI6ImhCMG5sUHZob05zQ2IvNUhqblErM2c9PSIsInZhbHVlIjoiWmVnM2MyMER2ZkROUXp4bTZpejVVY0QrbVdHVmUwM3psU0k4STdQMDNuemZYQXUraGRtSm9JWGpCWm9PTDdzSm ▶" ] "Set-Cookie" => array:2 [▶ 0 => "XSRF-TOKEN=eyJpdiI6ImcvMzJYckZjczFTUFZmYkZjUjBJWFE9PSIsInZhbHVlIjoia25OSkNhYVRLMHgyTUtwV3c1YkU1eThyVmJ4MzRwYndnMHc4aVByc3AyUVBtZFNVaEJteHdxQVVEU2JtV2drSkdXUnhIRzFvSklYY3JYeUNyZVBtY0E2NUdzb2Z4VHNSK1o4bDlkZDBNRnZheU43QUowTjYzeENOQ1BFODlCS1MiLCJtYWMiOiJjOTI5ZDc4ZjFhYjAwYzBmNmVmZGY3ZDlhMjM3YmU4YmViNTRjNWYyMTBhMDIxYjljZGZiNDdkNzJlODUzYWU2IiwidGFnIjoiIn0%3D; expires=Fri, 04-Jul-2025 16:58:43 GMT; path=/; secure ◀XSRF-TOKEN=eyJpdiI6ImcvMzJYckZjczFTUFZmYkZjUjBJWFE9PSIsInZhbHVlIjoia25OSkNhYVRLMHgyTUtwV3c1YkU1eThyVmJ4MzRwYndnMHc4aVByc3AyUVBtZFNVaEJteHdxQVVEU2JtV2drSkdXUnhIR ▶" 1 => "tagmyfish_session=eyJpdiI6ImhCMG5sUHZob05zQ2IvNUhqblErM2c9PSIsInZhbHVlIjoiWmVnM2MyMER2ZkROUXp4bTZpejVVY0QrbVdHVmUwM3psU0k4STdQMDNuemZYQXUraGRtSm9JWGpCWm9PTDdzSmtabmtqcnpTakJ1cXBUTUdUTCtQdCtHTDZQWWxadUFnMTFET1VhTE5NcDMwQ2gwM0F6QURkWnYzV2N1NTFsVHMiLCJtYWMiOiJmMDE3NTE1ZmVjODQxZWIyZjIyNmRiYTM0MGVmNDkwMjFiZTNhYmM2YTRjOTQyZGQwYzdiNjM0OWRkNDFiYjIwIiwidGFnIjoiIn0%3D; expires=Fri, 04-Jul-2025 16:58:43 GMT; path=/; secure; httponly ◀tagmyfish_session=eyJpdiI6ImhCMG5sUHZob05zQ2IvNUhqblErM2c9PSIsInZhbHVlIjoiWmVnM2MyMER2ZkROUXp4bTZpejVVY0QrbVdHVmUwM3psU0k4STdQMDNuemZYQXUraGRtSm9JWGpCWm9PTDdzSm ▶" ] ]
0 of 0array:3 [▼ "_token" => "YxNTsRmfnUUaFkj5nv3aKs09JfjDVzXde9Ordwqc" "_previous" => array:1 [▶ "url" => "https://dev.tagmyfish.com/countries/northern-ireland" ] "_flash" => array:2 [▶ "old" => [] "new" => [] ] ]